Clonal Integration Enhances the Performance of a Clonal Plant Species under Soil Alkalinity Stress
نویسندگان
چکیده
Clonal plants have been shown to successfully survive in stressful environments, including salinity stress, drought and depleted nutrients through clonal integration between original and subsequent ramets. However, relatively little is known about whether clonal integration can enhance the performance of clonal plants under alkalinity stress. We investigated the effect of clonal integration on the performance of a typical rhizomatous clonal plant, Leymus chinensis, using a factorial experimental design with four levels of alkalinity and two levels of rhizome connection treatments, connected (allowing integration) and severed (preventing integration). Clonal integration was estimated by comparing physiological and biomass features between the rhizome-connected and rhizome-severed treatments. We found that rhizome-connected treatment increased the biomass, height and leaf water potential of subsequent ramets at highly alkalinity treatments but did not affect them at low alkalinity treatments. However, rhizome-connected treatment decreased the root biomass of subsequent ramets and did not influence the photosynthetic rates of subsequent ramets. The biomass of original ramets was reduced by rhizome-connected treatment at the highest alkalinity level. These results suggest that clonal integration can increase the performance of clonal plants under alkalinity stress. Rhizome-connected plants showed dramatically increased survival of buds with negative effects on root weight, indicating that clonal integration influenced the resource allocation pattern of clonal plants. A cost-benefit analysis based on biomass measures showed that original and subsequent ramets significantly benefited from clonal integration in highly alkalinity stress, indicating that clonal integration is an important adaptive strategy by which clonal plants could survive in local alkalinity soil.
منابع مشابه
The optimal balance between sexual and asexual reproduction in variable environments: a systematic review
Many plant species have two modes of reproduction: sexual and asexual. Both modes of reproduction have often been viewed as adaptations to temporally or spatially variable environments. The plant should adjust partitioning to match changes in the estimated success of the two reproductive modes. Perennial plants showed that favorable habitats in soil nutrients or water content tend to promote cl...
متن کاملPlant traits enabling survival in Mediterranean badlands in northeastern Spain suffering from soil erosion
Question: This study analyzed the effect of severe soil erosion on species composition of plant communities by favouring species showing certain growth forms, root-sprouting and clonal growth abilities. Location: The study area was located between the middle Ebro Valley and the PrePyrenees (northeastern Spain). Methods: Root-sprouting and shoot-rooting abilities, clonal reproduction and growth ...
متن کاملAn Invasive Clonal Plant Benefits from Clonal Integration More than a Co-Occurring Native Plant in Nutrient-Patchy and Competitive Environments
Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more...
متن کاملEffects of clonal integration on the invasive clonal plant Alternanthera philoxeroides under heterogeneous and homogeneous water availability
Many notorious invasive plants are clonal, living in heterogeneous or homogeneous habitats. To understand how clonal integration affects the performance of these plants in different habitat conditions, an 8-week greenhouse experiment was conducted: ramet pairs of A. philoxeroides were grown in two habitats, either heterogeneous or homogeneous in water availability, with the stolon connections e...
متن کاملClonal integration facilitates the colonization of drought environments by plant invaders
Biological invasion represents one of the main threats for biodiversity conservation at the global scale. Identifying the mechanisms underlying the process of biological invasions is a crucial objective in the prediction of scenarios of future invasions and the mitigation of their impacts. In this sense, some plant attributes might better explain the success of invasive plant species than other...
متن کامل